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LETTER TO THE EDITOR 

Integro-differential Schrodinger equation for dissipative 
systems 

Harold Cooper? 
Department of Physics, University of California, Riverside, CA 92521, USA 

Received 10 March 1993 

Abslract. The canonical treatment of the quantum dynamics of systems with dissipation 
affected degrees of freedom proceeds within the sum over histories bicture of quantum 
theory. This paper proposes to supplement that approach with a SchrBdinger equation 
approach to the same physics. Starting from a Lagrangian that is of the same form as those 
obtained by path integration, one can arrive at a quantized Hamiltonian analogue using 
the standard rules appIied to nondissipative systems. The resulting Hamiltonian is non- 
diagonal in position representation, so that the corresponding SchrGdinger equation 4: a 
nonlinear integro-differential equation reminiscent of the Harttee equation. In the case of 
the normal tunnel junction, with a quasiparticle heat bath, this equation has an exact 
solution. 

Suppose one attempts to give an account of the quantum mechanics associated with 
the Lagrangian 

.Y?(q)=-- @%) 2 V(p(t))+jR(t-I)a(~(t))D(p(O) dt’. 

It was originally shown by [ 1-31 that 2 ’ s  of this form could be obtained from models 
coupling 9 to degrees of freedom comprising a heat bath. Upon integrating out the heat 
bath degrees of freedom, one obtains the quantum analogue of (1) expressed as a path 
integral 

This letter will attempt the quantization of (1) using the rules that take one from 
the dissipation free Lagrangian (R=O) to its quantized Hamiltonian analogue and 
corresponding Schrodinger equation (see equations (17) and (22)). For the sake of 
having a non-trivial model system, the main ideas will be formulated in the context of 
the superconducting tunnel junction with quasiparticle fluctuation induced dissipation 
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and capacitive charging. The Lagrangian for this system is 131 

1 9(f'))+ 4 j df' B(t - f') COS 

F'revious attempts to quantize (3), by Schrodinger equation, were based on a slowly 
varying approximation [3]. Let z = f- f in (3). Expand 9(t+ r )  in the Taylor series 

If these time derivatives are small, the cosine terms can also be expanded 

90=-+aq?+p 8 .  cos 9 
2 

where the M, terms have pderivatives higher than one. 
Dropping the M, terms allows one to quantize 90 using the usual method. 

( 5 )  

Classical rules: 

(i) deline a canonical momentum: I =  a S / a @ ;  
(ii) form a classical Hamiltonian: H=@1-90;  
(iii) generate F(1,9) through the Poisson bracket F= {H, 5'). 

Quantizing rules: 

(iv) substitute operators 9; i(a/ap) for 9; I; 
(v) replace Poisson brackets by commutators; 
(vi) form Schr6dmger equation Hv(9)= E ~ ( P ) ) .  

Problems with this approach arise when one attempts to quantize the next level of 
approximation following from (5): 

9, = s o +  y(@)Z. (6) 
Because contains a second derivative, a new set of quantization rules are required. 
The most obvious, non-trivial, attempt to quantize involves a new classical Hamiltonian 

(7) HI(% 1; 4, k)=l@+k@-S'i(@ @, @) 

with new canonical momenta 

Presumably, one could lind operator representations for 9, I; @, k and by substitution 
in (7) arrive at a quantized HI. 
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Although the scheme that takes one from -Yo to quantum theory is standard, the 
quantization of 9, requires wholly new concepts in both classical mechanics and its 
quantization. That the penalty for the inclusion of one higher order in (5 ) ,  is a complete 
revision of the standard formalism, seems extravagant. This problem only becomes 
worse upon the inclusion of ever higher orders. Each additional level of approximation 
requires the definition of novel canonical momenta whose physical meanings are 
unclear. The net result is a proliferation of ‘basic’ rules for treating individual cases. 
Furthermore, since So is obtained as the lowest rung on the ladder of approximations 
leading to the ‘divergence’ above, any attempt to quantize Z0 using standard rules is 
questionable. 

In what follows, (3) will be convected into its quantized Hamiltonian analogue using 
only one additional rule beyond the six listed above. This rule is qbtained by insisting 
on consistency with a result obtained by field theory techniques. This result (whose 
derivation is too long for a note) consists of an effective weak coupling Hamiltonian 
HCR. By insisting that the formalism, to be produced, reduce to Ha in the weak coupling 
limit, one resolves an ambiguity that would otherwise prevent the recovery of a unique 
formalism. 

Keeping these remarks in mind one can proceed with the quantization of (3). First 
define canonical momentum l = @  and form H=I@-9:  

+c.c.] . (9) 

Notice that H i s  evaluated at t =  0 so that its quantization proceeds in the Schrodinger 
representation. The product of exponentials is used because the cosine form does not 
recover H,; the ‘seventh rule’ is thus utilized. 

The trick that allows one to express H (equation (9 ) )  in terms of a single canonical 
momentum, is the use of rule three to give an expression for *derivatives: 

I m 
+2  J-, dz B(-r)[e-ip/2 e-im[r)/2 

-= dm9 {H, {H, .  . . { H ,  q } .  . .}}. 
dt“ 

Putting (10) into (4) and the result into (9) gives a self-consistently defined classical H. 
Replacing Poisson brackets by commutators sums (4) exactly: 

(11) p( r )  = eiHip, e-iHr 

whence the quantized H can be written 
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Written more compactly, (12) becomes 

H= H,-gF(H) (13) 
where gF is the curly bracket in (12) and g is a dimensionless coupling parameter. In 
the weak coupling limit, the first iteration of (13) yields: He~=H,-gF(H,) ,  the field 
theory result. A further advantage of this approach is that it trivially recovers the field 
theory result; something out of reach of the slowly varying approach. 

One is now in a position to generate a self-consistent slowly varying approximation 
via 

e i H r ~  -O+ir[H, O]+. . .. 
In the weak coupling limit, and to lowest non-trivial order, Har becomes 

1 dr(B+R*) cos9. 

By forming (9lHI q'), one can obtain a SchrBdinger equation via 

where 

n 

where AF ; BF are the Fourier transforms of A ;  B evaluated at frequency ( & ( I )  - ~ ( l ' ) ) /  
l i ;  U is the capacitive charging energy e2/C. 

For the normal tunnel junction, BF=O and (17) has an exact plane wave solution 
exp(-iIq). One obtains a recursive expression for the energy band 

This band agrees with bands obtained by other methods [4] in that there is no splitting, 
but there is a Van-Hove singularity on the first Brillouin zone boundary ( I  I1 <: in a 
4n-periodic model). 
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The main result of this work is a method for quantizing dissipative systems whose 
classical Hamiltonians are of the form: s (19) 

12(t) H( t )  =-+ V(p(t)) - R(t - t')D( q( t))D(q(f')) dt'. 2 

(1) Working in Heisenberg representation, replace the D's by: 

D(p(t))  =eiHtD(p) e-'"'. (20) 
Do the same with I ( t )  and p(t) in V. 

(2) Form e-iH' H(q(t))  eiX' to get the Schrcidmger representation: 

1 a2 
H=-- -+ V(9)-  [D(q)  e'"'D(p) e-'Hr]+h.c. 

2 a$ 
r = f - t .  

(3) Follow the procedure above to get a Schodinger equation: 

(22) 
1 a2 [-? q+ V(4+9)-Jd9, K(9? 9')vr(@),')=dOvXd 

where K is a function of the other E'S so that the energy spectrum of (22) is 
recursively defined. 

This procedure is easily generalized to systems with multiple degrees of freedom and 
field degrees of freedom. In the latter case, one obtains Hamiltonian densities of the 
form: 

H= d 3 x 8  

where S/S@(r) is a functional derivative and @ is the canonically conjugate field 
variable. 

Using the methods of this note provides a new way of attacking problems that might 
be preferable to the path integral for certain discussions. 

The author thanks Eugen Siminek for useful conversations. 

J 
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